МИНОБРНАУКИ РФ

Нижнекамский химико-технологический институт (филиал)
Государственного образовательного учреждения высшего профессионального образования

Казанский национальный исследовательский технологический университет

«УТВЕ	ЕРЖДАЮ»	
Вав. ка	федрой \Im	ЭТЭОП
цоцен′	г Н. И. Г	орбачевский
~	»	

Информационно-измерительная техника и электроника

Контрольная работа

ЧАСТЬ 1

для студентов дневного отделения специальности 140211 «Электроснабжение»

Правила оформления контрольных работ

Контрольная работа состоит из расчетно-графических работ по разделам «Усилители постоянного и переменного тока» и «Операционные усилители».

Расчетно-графическая работа оформляется в 12 листовой тетради. Задания переписываются полностью так, как они даны в задании со схемами, решения сопровождаются подробными пояснениями, графические построения выполняются карандашом либо могут быть распечатаны на принтере с использованием программных обеспечений Microsoft Exel, MathCad и т.д..

Контрольная работа является материалом для принятия у студента зачета и основным квалификационным требованием для допуска к сдаче экзамена.

Вариант контрольного задания определяется порядковым номером студента по зачетке.

Задание 1 Расчет каскада однотактного транзисторного усилителя мощности по схеме с ОЭ

Рассчитать каскад усиления однотактного транзисторного УМ по схеме ОЭ и определить следующие параметры устройства:

- 1. Тип транзистора и его характеристики,
- 2. Сопротивление в цепи эмиттера $R_{\rm 9}$
- 3. Емкость конденсатора Сэ,
- 4. Сопротивления R₁ и R₂
- 5. Коэффициент усиления по мощности k_{р.}
- 6. Коэффициент трансформации трансформатора $k_{\scriptscriptstyle T}$.
- 7. Сопротивления первичной и вторичной обмоток трансформатора связи,
- 8. Индуктивность L_1
- 9. Площадь поверхности охлаждающего радиатора, если необходимо.

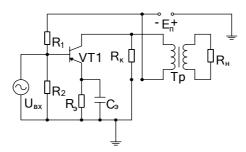


Рис. 1 – Принципиальная схема каксада усиления

Варианты заданий для самостоятельного расчета усилительного каскада с трансформаторной связью приведены в таблице 1.

Таблица 1

№ п/п	Р _{вых} , мВт	R _H , OM	f _н , кГц	Еп, В
1	180	3	15	8
2	190	6	20	10
3	200	4	25	6
4	250	8	30	12
5	220	4	35	8
6	500	16	45	10
7	300	4	50	12
8	500	8	40	6
9	600	6	60	12
10	550	8	35	6
11	230	4	45	8
12	140	3	15	10
		6	18	12
13	150	8		
14	160	2	26	6
15	260		32	8
16	220	4	16	8
17	230	6	7	6
18	245	8	8	12
19	380	10	10	10
20	280	3	15	8
21	200	6	20	10
22	200	4	25	6
23	210	8	30	12
24	250	4	35	8
25	380	16	45	10
26	360	4	50	12
27	250	8	40	6
28	270	6	60	12
29	280	8	35	6
30	120	4	45	8
31	250	3	15	10
32	220	6	18	12
33	240	8	26	6
34	360	2	32	8
35	270	4	16	8
36	250	6	7	6
37	350	8	8	12
38	360	10	10	10
39	260	4	12	8
40	240	4	25	6
41	260	8	30	12
42	270	4	35	8
43	390	16	45	10
44	240	4	50	12
45	250	8	40	6

Пример выполнения задания 1

Рассчитать каскад усиления однотактного транзисторного УМ по схеме ОЭ и определить следующие параметры устройства:

- 10. Тип транзистора и его характеристики,
- 11. Сопротивление в цепи эмиттера R_{3}
- 12. Емкость конденсатора Сэ.
- 13. Сопротивления R_1 и R_2
- 14. Коэффициент усиления по мощности k_p
- 15. Коэффициент трансформации трансформатора $k_{\scriptscriptstyle T}$,
- 16. Сопротивления первичной и вторичной обмоток трансформатора связи,
- 17. Индуктивность L₁
- 18. Площадь поверхности охлаждающего радиатора, если необходимо.

Расчетные данные:

- 1. Мощность на выходе каскада $P_{\text{вых}}$ =190 мВт
- 2. Сопротивление нагрузки R_н=8 Ом
- 3. Нижняя граничная частота f=10 кГц
- 4. E_{π} =9 B.

Схема устройства приведена на рис.1

Решение.

1. Для выбора типа транзистора предварительно определим следующие параметры транзистора.

Мощность, рассеиваемую транзистором:

$$P_0 = \frac{P_{\text{\tiny GBJX}}}{\eta_{\text{\tiny IF}} \eta_{\text{\tiny T}}} = \frac{0.190}{0.4 \cdot 0.8} = 0.6 \text{ BT},$$

где η_{κ} =0,035...0,45 – коэффициент использования транзистора, $\eta_{\scriptscriptstyle T}$ – КПД трансформатора, $\eta_{\scriptscriptstyle T}$ =0,7...0,9.

Падение напряжения на активном сопротивлении первичной обмотки трансформатора:

$$\Delta U = U_{r_{T1}} + U_{R_9} = (0,2 \div 0,3) E_{\Pi} = 0,25 \cdot 9 = 2,25 \text{ B}.$$

Наибольшее возможное напряжение на коллекторе транзистора: $U_{\kappa,\mathfrak{I},\mathfrak{M}} \approx (E_n - \Delta U)/\eta_\kappa = (9-2,25)/0,4 = 16,875 \; \mathrm{B}$

Выбираем по полученным значениям P_0 и $U_{\kappa,\mathfrak{I},\mathfrak{M}}$ из справочника транзистор ГТ 402А: по условиям: 1) $P_0 \leq P_{\text{доп}}$, где $P_{\text{доп}}$ — максимальная допустимая мощность рассеяния транзистора, 2) $U_{\kappa,\mathfrak{I},\mathfrak{M}} \leq U_{\kappa,\mathfrak{I},\mathfrak{I},\mathfrak{M}}$ где $U_{\kappa,\mathfrak{I},\mathfrak{I},\mathfrak{M}}$ — максимально допустимое напряжение между коллектором и эмиттером.

Выбираем транзистор $P_{\text{доп}}$ =600 мВт, $U_{\text{к.э.доп.}}$ =25 В, Определяем из справочника основные параметры транзистора и его статические характристики (рис.1, рис.2):

 $I_{_{\mathrm{к.лоп}}} = 0,5\mathrm{A}$ - допустимый ток коллектора

 β_{min} = h_{219} = 30; - коэффициент передачи тока транзистора в схеме ОЭ,

 $R_{\text{т.к.}}$ =0,1 °C/MBт – тепловое сопротивление коллекторного перехода, $T_{\text{пер.max}}$ = 85°C – максимальная допустимая температура коллекторного перехода.

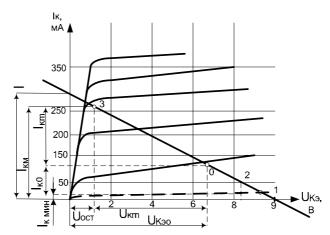


Рис. 2 – Выходные статические характеристики транзистора ГТ402А.

2. На выходных стат. характеристиках (рис.1) находим положение точки покоя т.0, для этого определяем напряжение на коллекторе $U\kappa \mathfrak{p}_{\theta}$ при $U_{\text{вx}}=0$ и ток покоя коллектора $I_{\kappa 0}$:

$$\begin{split} &U_{\mathrm{K}\!3_{\!0}} = \!E_{\mathrm{II}} - \!\Delta U = \!9 - \!2,\!25 = \!6,\!75B\,,\\ &I_{\mathrm{K}\!0} = \!\frac{P_{0}}{U_{\mathrm{K}\!3_{\!0}}} = \!\frac{0,\!6}{6,\!75} = \!0,\!09A = \!90\mathrm{M}A\,\,. \end{split}$$

Далее находим точку 1 при U_{κ_9} = E_{π} =9 В; I_{κ} =0. Через т.0 и 1 проводим нагрузочную прямую.

Для определения рабочего участка задаемся остаточным напряжением, принимая $U_{\text{ост}}=1$ В и наименьшим током коллектора $I_{K_{\min}} \geq I_{\text{к.н.}}$ (точка 2), где $I_{\text{к.н.}}$ — начальный ток коллектора, обычно дается в справочнике. Если $I_{\text{к.н.}}$ не дано можно без существенной ошибки принять $I_{\text{к.н.}}=10\dots50$ мА.

По величине остаточного напряжения определяем максимальное значение тока коллектора $I_{\text{к.м}}$ (точка 3) с условием $I_{\text{к.доп.}}$

Таким образом рабочий участок находится находится между точками 2 и 3.

Наибольшая величина тока коллектора:

$$I_{\kappa,\text{M}} = 260 \text{ MA} < I_{\kappa,\text{HOII}} = 0.5 \text{ A}$$

Определим параметры усиливаемого сигнала.

Наибольшая амплитуда выходного напряжения сигнала:

$$U_{\kappa,m} = U_{\kappa,3.0} - U_{ocm} = 6,75 - 1 = 5,75 \text{ B}$$

Наибольшая амплитуда выходного тока сигнала: $I_{\kappa,\mathrm{m}} = I_{\kappa,\mathrm{m}} - I_{\kappa0} = 260 - 90 = 170 \ \mathrm{mA}$

Определим мощность сигнала на выходе каскада, при правильно выбранном режиме должно выполняться условие $P_{_{\kappa ac}} \geq \frac{P_{_{6blX}}}{n}$:

$$\begin{split} P_{_{\mathit{KAC}}} &= \frac{2U_{_{\mathit{K.M.}}} \cdot 2I_{_{\mathit{KM}}}}{8} = \frac{2 \cdot 5,75 \cdot 2 \cdot 0,17}{8} = 0,488 \; \, \text{Bt.} \\ \frac{P_{_{\mathit{BbX}}}}{\eta_{_{\mathrm{T}}}} &= \frac{0,19}{0,8} = 0,238 \; \, \text{Bt.} \end{split}$$

Как видно из полученных соотношений, условие выполняется. Если это условие не выполняется, то увеличивают наклон прямой (значение I берут большим).

Далее рассчитаем наибольшее и наименьшее значения входного тока (входным током является ток базы $I_{\rm 5}$) и отмечаем эти значения на входной статической характеристике при $U_{\rm K9}$ =5 B (рис. 2):

$$I_{\delta.MUH} = \frac{I_{\kappa.Min}}{\beta_{\min}} = \frac{0.01}{30} = 0.33 \cdot 10^{-3} A$$

$$I_{\delta.M} = \frac{I_{k.M}}{\beta_{\min}} = \frac{0.26}{30} = 8.6 \cdot 10^{-3} A$$

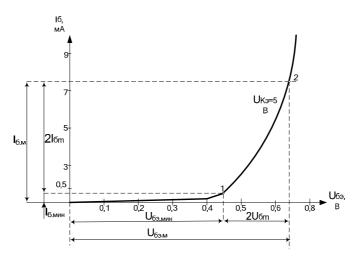


Рис. 3 – Входная статическая характеристика транзистора ГТ402Б

По т. 1 и 2 входной характеристики находим наибольшее и наименьшее напряжение на базе ($U_{\text{бэ.м}}$ и $U_{\text{бэ.мин}}$), а также наибольшую амплитуду напряжения и тока входного сигнала $U_{\text{бэ.m}}$ и $I_{\text{б.m}}$:

$$U_{\text{бэ.м}} = 0,68 \text{ B}, U_{\text{бэ.мин}} = 0,45 \text{ B},$$

 $U_{\text{бэ.m}} = 0,5 (U_{\text{бэ.мин}} - U_{\text{бэ.мин}}) = 0,5(0,68 - 0,45) = 0,115 \text{ B},$
 $I_{\text{б.m}} = I_{\text{б.м}} - I_{\text{б.мин}} = 8,6 - 0,33 = 8,27 \text{ MA}.$

Мощность входного сигнала:

$$P_{\rm ex} = \frac{2U_{\it \delta m} \cdot 2I_{\it \delta m}}{8} = \frac{2 \cdot 0,115 \cdot 2 \cdot 8,27}{8} = 0,475 \ {
m MBT}.$$

Входное сопротивление транзистора переменному току:

$$R_{ex} = \frac{2U_{\delta m}}{2I_{\delta m}} = \frac{2 \cdot 0.115}{2 \cdot 8.27} = 13.9 \text{ Om.}$$

3. Сопротивление цепи эмиттера
$$R_{_9}=\frac{U_{_{R_9}}}{I_{_{\kappa0}}}=\frac{0.9}{0.09}=10\,$$
 Ом где $U_{_{R_9}}=(0.3\div0.5)\Delta U=0.4\Delta U=0.4\cdot2.25=0.9B$

4. Емкость конденсатора С_э определим из выражения:

$$C_9 \ge \frac{1}{2\pi f_u R_9} = \frac{1}{2 \cdot 3,14 \cdot 10 \cdot 3,125} = 5 \cdot 10^{-3} \Phi$$

При С₃ более 30 мкФ блокировочный конденсатор можно не применять.

5. Сопротивление делителя переменному току выбирается из условия:

$$\begin{split} R_{\mathrm{l-2}} &= \frac{R_{\mathrm{l}} \cdot R_{\mathrm{2}}}{R_{\mathrm{l}} + R_{\mathrm{2}}} \geq (8 \div 12) R_{\mathrm{ex}} = (8 \div 12) \cdot 13,9 = 111,2...166,8 \;\; \mathrm{Om}; \; \mathrm{принимаем} \;\; \mathrm{R}_{\mathrm{l-2}} = 150 \;\; \mathrm{Om}, \; \mathrm{тогда} \\ R_{\mathrm{l}} &= \frac{E_{\mathit{\Pi}} \cdot R_{\mathrm{l2}}}{I_{\mathit{K0}} R_{\mathrm{9}}} = \frac{9 \cdot 150}{0,09 \cdot 10} = 1,5 \cdot 10^{3} = 1,5 \;\; \mathrm{кOm}, \\ R_{\mathrm{2}} &= \quad \frac{E_{\mathit{\Pi}} \cdot R_{\mathrm{l2}}}{R_{\mathrm{l}} - R_{\mathrm{l-2}}} = \frac{9 \cdot 150}{1500 - 150} = 1 \;\; \mathrm{Om}. \end{split}$$

6. Коэффициент усиления каскада по мощности:

$$K_p = \frac{P_{\text{\tiny obs}X}}{P_{\text{\tiny ex}}} = \frac{0.19}{0.475 \cdot 10^{-3}} = 400$$

Для расчета коэффициента трансформации $k_{\scriptscriptstyle T}$ по наклону нагрузочной прямой определяют величину сопротивления коллекторной нагрузки переменному току:

$$R_K = \frac{U_{K.9M}}{I} = \frac{16,875}{0,27} = 62,5 \text{ Om}$$

$$\kappa_{_{\rm T}} = \sqrt{\frac{R_{_{\scriptscriptstyle H}}}{R_{_{\scriptscriptstyle K}}\eta_{_{\scriptscriptstyle T}}}} = \sqrt{\frac{8}{62,5\cdot0,8}} = 0,4$$

8. Сопротивления обмоток выходного трансформатора:

$$r_{\text{T}1} = 0.5R_{\kappa}(1 - \eta_T) = 0.5 \cdot 62.5 \cdot (1 - 0.8) = 6.25 \text{ Om},$$

 $r_{\text{T}2} = 0.5R_{\kappa} \frac{1 - \eta_T}{\eta_T} = 0.5 \cdot 62.5 \cdot \frac{1 - 0.8}{0.8} = 7.8 \text{ Om}$

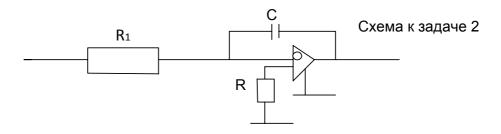
9.Индуктивность первичной обмотки:

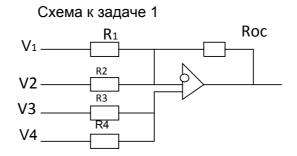
$$L_{1} = \frac{R_{_{_{\mathit{H}}}} + r_{_{\mathit{T2}}}}{2\pi f_{_{_{\mathit{H}}}} n^{2} \sqrt{M_{_{_{\mathit{H}}}}^{2} - 1}} = \frac{8 + 7.8}{2 \cdot 3.14 \cdot 10000 \cdot 0.4^{2} \cdot \sqrt{1.3^{2} - 1}} = 9.3 \cdot 10^{-4} \,\mathrm{\Gamma H}$$

 M_{H} - коэффициент искажения, M_{H} =1,3

10.Площадь охлаждения радиатора:

$$S_{ox} = \frac{(1200 \div 1500)P_0}{T_{nep.max} - T_{cp.m}P_0R_{TK}} = \frac{1400 \cdot 0.6}{85 - 30 \cdot 0.6 \cdot 0.1} = \frac{840}{83.2} \approx 10.1 \text{ cm}^2$$


где $T_{\text{ср.м}}$ - наибольшая средняя температура окружающей среды, принимаем $T_{\text{ср.м}}$ =30 $^{\circ}$ C.


Список рекомендуемой литературы:

- 1.Информационно-измерительная техника и электроника, под редакцией профессора Г.Г. Раннева, М, Академия, 2006.
 - 2.Г.Г. Раннев, А.П., Тарасенко, Методы и средства измерений, М. Академия, 2003 г.
 - 3.Ю.А. Исаков, Основы промышленной электроники, Киев, Техника, 1976г.
 - 4.В.А. Панфилов «Электрические измерения», М, Академия, 2006 г.
- 5.М.П. Цапенко ,Измерительные информационные системы: структуры и алгоритмы, системотехническое проектирование, М, Энергоатомиздат, 1985 г
- 6.А.П. Тарасенко, Теоретические основы, метрология, стандартизация и сертификация измерительных и информационных технологий, М, МГОУ, 2001 г.
- 7. Основы промышленной электроники: учебник для вузов/ В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков; под ред. В.В. Герасимова. 3-е изд., перераб. и доп. М.: Высш. шк., 1986. 336 с., ил.

	Контрольная работа ИИТ и Э (часть 2)								
1. Or	1. Определить V _{вых} в Если:								
	V ₁ ,B	V2,B	V3,B	V4,B	R1,kom	R2,kom	R3,kom	Ra,kom	Roc,kom
1	1,5	2	-1	-2	1,2	2	1,4	2	3
2	1,8	3	2	-1	1,4	2,2	1,6	2,4	4
3	1,2	1,8	-2,2	3	1,6	2,4	1,2	2,2	2
4	1	-1	1,2	4	1,8	2	1,6	2	2,6
5	1,6	-0,8	0,6	0,5	1,4	1,2	1,2	2,1	1,8
6	1,1	1,3	2,4	0,8	1,7	1,6	2	2,3	4,2
7	1,6	2	-1	1,2	1,4	1,8	2,1	2,4	3,6
8	1	1,8	-0,9	1,6	1,6	2,1	1,9	1,8	3,2
9	1,5	2,2	-1,1	1,3	1,4	2,3	1,6	2,2	3,8
10	1,4	2,3	-2,2	2	1,6	2,2	1,4	1,8	3,6
11	1,2	3,2	-1,8	-1	1,4	2,2	1,6	1,9	3,8
12	1	3,2	-1,2	0,2	1,6	2,8	1,9	2,1	3,1

Вариант	рисунок	R=R1	С
1	1	25	1,6
2		10	2,2
1 2 3 4	3	15	2,4
4	4	20	5
5	5	20 12	1,6 2,2 2,4 5 2,5 1,1 4
	6	8	1,1
7 8	7	22	4
8	8	15	1,8 2,1 2 0,5 2,3 1
9	9	8	2,1
10	10	14	2
11 12	1 2 3 4	20	0,5
12	2	27	2,3
13	3	10	1
14	4	11	1,2
15	5	14	1,2
16	6	12	0,5
17	7	18	1,1
18	8	16	0,5 1,1 1,3 1,8 2,2
19	9	18	1,8
20	10	22	2,2

